BGP Policy violations in the data-plane

Pierre Francois, Institute IMDEA Networks Paolo Lucente, PMACCT

> pierre.francois@imdea.org paolo@pmacct.net

Agenda

- Two well-known facts about routing...
- leading to policy violations...
- watch your network !

Observation I

- Policy-constrained path selection in BGP...
 Flexible, per-prefix granularity
- "A BGP-router's **route processor** will pick a path towards a given destination **prefix** by applying the following rules"

Weight Local-pref As Path Length IGP/Med

•••

Observation I

- ... dominated in the data-plane
- A FIB will pick a path towards a given destination address by applying the following rules

Longest prefix match to get the prefix

(Best path towards that prefix was picked based on Weight Local-pref As Path Length IGP/Med ...)

Observation II

- Common to provide a lot of routing flexibility
- Route propagation control offered by Sprint
 - Have to be a customer of Sprint
 - 65000:XXX : Do not advertise to ASXXX can be AOL, NTT, BT, Level3, GBLX, Verizon, AT&T, ...

Powerful complementary means to limit path knowledge

- Selective advertisement, performed locally
- Selective advertisement, triggered remotely

Control-plane/Data-plane can mismatch

- Paths for **overlapping** prefixes are controlled independently
 - By yourself
 - By your BGP neighborhood
- Forwarding plane dominated by the longest prefix match rule

• What if your policy differs for overlapping prefixes ?

Toy case study

A BGP advertisement for NLRI P/p A BGP advertisement of a prefix more specific than P/p, say P/p+1

The BGP policy violation trick

- Play with _____ and communities
- Make reach only a subset of the ASes
 - Some ASes forward ______according to ______
 - Until packet reaches an AS knowing
 - Resulting data-plane not necessarily fitting everyone's policy...

Initial routing status

Initial routing status

Initial routing status

Let's start playing : Scope advertisement of the more specific

New path in the network

This is annoying

- Your policies can be violated
- Your flexible routing service can turn **you** into a transit thief when misused by **your** customers
- "Nothing breaks" when the violation takes place
- Ex.: Just consider the Tier-I clique...

So what can you do ?

- Forward differently
- Filter-out / Drop
- Monitor !

Forwarding differently

- Deploy BGP so as to have forwarding at an incoming interface solely based on policy fitting paths
 - Put the Internet in VRFs
 - Careful configuration of import rules
- Complex, Costly

Filtering out / Drop

- Drop packets, at ingress, for routes that are not supposed to be served there
 - Assume malicious behavior by default
 - Interrupts service from/to customers
- Filter out, at egress
 - Range served as if the msp did not exist

Monitor

- You got the means to monitor ingress-egress traffic demand to run your business, right ?
- "Just" check if counters for non-policy compliant transit
 - Pick the phone when counters are not at 0
 - Filter-out if the issue is not getting fixed early enough
- Seems like few operators run the check

PMACCT

- Tool developed by Paolo Lucente (See talk at RIPE 61 plenary)
- Policy violation check is a matter of a couple of lines

http://wiki.pmacct.net/DetectingRoutingViolations

 Tools integrating with pmacct can benefit from this work (ie. Cariden)

Thanks !