
“pmacct, a new player in the
network management arena”

http://www.pmacct.net

Paolo LUCENTE, CNR-Italy

Istanbul, 25 April 2006

What is pmacct ?

pmacct: why, when and how .. (I)

• The project came out of operational
needs, 3 years ago (beginnings of 2003)

• At the time it was easy to get data either:
– “static”, ie. fixed view of your network traffic

data. Full stop.
– logged on the disk in a range of proprietary

format; then APIs to get in touch with them.
– nicely arranged on the console screen or web

browser of choice.

pmacct: why, when and how .. (II)

Though, we were still missing:
• A way to get data from our network, being also

able to choose how to report them and
supporting multiple collection methods.

• A straight way to feed network data to external
applications in order to build figures, graphs,
plots, sums, etc.

• A straight way to powerfulness and flexibility
offered by the SQL data language.

pmacct is a PASSIVE network
monitoring tool

Passive network monitoring is basically an
observation point; it enables us to understand:

who is using the network.
which applications/services are most used.
how much bandwidth is in use over the time.
are we generating DoS / target of a worm ?
how our BGP peerings behave.
what is that sudden hill in the last traffic graph ?

ACTIVE network monitoring tools

.. by contrast, they are probes injected in the
network; and they enable us to understand
different things:
How many packets get lost ?
Do all the probes have the same trip ?
How much it takes to deliver the probe ?
Hey, let’s check that our premium IP

offering works as expected under heavy
traffic loads

pmacct, the modular architecture:
one collector, multiple views

pmacct: reporting traffic data from
broadband networks (I)

pmacct: reporting traffic data from
broadband networks (II)

pmacct: an outlook of the
distributed architecture

pmacct: about classification

pmacct: classification, RE

An example of Regular Expressions applied
to classification (this is from the L7-filter
project repository):

http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9] [\x09-\x0d -
~]*(connection:|content-type:|content-
length:|date:)|post [\x09-\x0d -~]*
http/[01]\.[019]

pmacct: classification, SO
u_int32_t classifier(struct pkt_classifier_data *data, int caplen, void **context, void **rev_context, void **extra)
{

struct rtp_context *ctx = NULL;
rtp_hdr_t *hdr = (rtp_hdr_t *) data->payload_ptr;
u_int16_t init;
u_int8_t version, pt;

init = ntohs(hdr->init);

version = init >> 14;
pt = init & 0x7f;

if (version == 2 && (pt < 35 || pt >= 96)) { /* Possibly, we are facing a RTP stream */
if (!(*context)) { /* We don't have enough data about the stream */

ctx = malloc(sizeof(struct rtp_context));
if (ctx) {

ctx->seq = ntohs(hdr->seq);
*context = ctx;

}
return 0;

}
else {

ctx = (struct rtp_context *) *context;
if (ntohs(hdr->seq) == ctx->seq+1) return 1;

}
}
return 0;

}

pmacct: classification, RE vs. SO

Regular Expressions (RE) classifiers are
proficient against the packet payload, easy to
develop and suitable for text-based protocols.
Shared Object (SO) classifiers are powerful (ie.

because of contexts), not limited to just catch
patterns (ie. Machine Learning tecniques) and
deal smoothly with binary-encoded protocols.
BUT require extensive and careful development.

“pmacct, a new player in the
network management arena”

http://www.pmacct.net

Part II

Examples and results

The newbie hat:
In+Out (sum) traffic per host (I)

shell> cat pmacctd-imt.conf
!
! pmacctd configuration example
!
interface: eth0
plugins: memory
!
aggregate: sum_host, flows
networks_file: networks.lst

The newbie hat:
In+Out (sum) traffic per host (II)

shell> ./pmacct -s
SRC IP PACKETS FLOWS BYTES
150.145.84.4 2 2 152
150.145.82.19 7594 38 6584356
150.145.87.15 1 1 128
150.145.90.255 2 2 466
150.145.80.51 127224 8819 23678985
150.145.81.18 2 2 460
150.145.87.159 83 11 8758
150.145.80.0 22 1 1144
150.145.87.108 1 1 247
150.145.84.156 34 9 2856
150.145.81.255 33 7 6662
150.145.82.10 1423 30 1091800
150.145.87.6 16787 3361 929034
[… continues …]

The newbie hat:
In+Out (sum) traffic per host (III)

a) The –M : getting a specific entry wrapped by a formatted output
shell> ./pmacct -c src_host -M 150.145.80.101
SRC IP PACKETS FLOWS BYTES
150.145.80.101 287522 2616 273081046

b) The –N : getting the counters. Introducing the -r reset flag. The quick way to
glue pmacct to external tools

shell> ./pmacct -c src_host -N 150.145.80.101 -r
334701089

shell> ./pmacct -c src_host -N 150.145.80.101
2790707

Building network traffic graphs (I)

interface: eth0
plugins: memory[out], memory[in]
!
aggregate[out]: src_net
aggregate_filter[out]: vlan and src net 150.145.80.0/20
imt_path[out]: /tmp/pmacct_out.pipe
!
aggregate[in]: dst_net
aggregate_filter[in]: vlan and dst net 150.145.80.0/20
imt_path[in]: /tmp/pmacct_in.pipe

Building network traffic graphs (II)
shell> cat mrtg-example.sh
#!/bin/sh

unset OUT
unset IN

OUT=`pmacct -c src_host –p /tmp/pmacct_out.pipe -N 150.145.80.0 -r`
IN=`pmacct -c dst_host –p /tmp/pmacct_in.pipe -N 150.145.80.0 -r`

echo $OUT
echo $IN
echo 0
echo 0

Building network traffic graphs (III)
shell> cat mrtg.conf
[…]
Target specific definitions
Target[pp]: `/usr/local/pmacct/scripts/mrtg-example.sh`
SetEnv[pp]: MRTG_INT_IP=“150.145.80.0" MRTG_INT_DESCR=“Server LAN"
MaxBytes[pp]: 1250000
LegendI[pp]:
Title[pp]: Server LAN
PageTop[pp]: <H1>Server LAN</H1>
<TABLE>

<TR><TD>System:</TD> <TD>Server LAN</TD></TR>
<TR><TD>Maintainer:</TD> <TD>CNR-BA Staff</TD></TR>
<TR><TD>Ip:</TD> <TD>150.145.80.0</TD></TR>

</TABLE>
[…]

Network traffic data, the SQL way
(I)

interface: eth0
plugins: pgsql[out], pgsql[in]
!
aggregate[out]: src_host
aggregate_filter[out]: vlan and src net 150.145.80.0/20
sql_table[out]: acct_out
!
aggregate[in]: dst_host
aggregate_filter[in]: vlan and dst net 150.145.80.0/20
sql_table[in]: acct_in
!
sql_refresh_time: 60
sql_history: 1h
sql_history_roundoff: h
sql_preprocess: minb=60000

Network traffic data, the SQL way
(II)

shell> psql -U pmacct -c "SELECT * FROM acct_out \
WHERE ip_src = '150.145.80.101‘ \
ORDER BY stamp_inserted DESC \
LIMIT 10;"

ip_src | packets | bytes | stamp_inserted | stamp_updated
----------------------+------------+-------------+-----------------------------+---------------------------
150.145.80.101 | 355394 | 29925806 | 2006-01-08 16:00:00 | 2006-01-08 16:48:02
150.145.80.101 | 556245 | 46096570 | 2006-01-08 15:00:00 | 2006-01-08 16:00:02
150.145.80.101 | 26364 | 12618610 | 2006-01-08 14:00:00 | 2006-01-08 15:00:02
150.145.80.101 | 196319 | 16508068 | 2006-01-08 13:00:00 | 2006-01-08 14:00:01
150.145.80.101 | 341143 | 40921593 | 2006-01-08 12:00:00 | 2006-01-08 13:00:02
150.145.80.101 | 208050 | 30011464 | 2006-01-08 11:00:00 | 2006-01-08 12:00:01
150.145.80.101 | 196337 | 15404272 | 2006-01-08 10:00:00 | 2006-01-08 11:01:02
150.145.80.101 | 205970 | 16656939 | 2006-01-08 09:00:00 | 2006-01-08 10:00:03
150.145.80.101 | 376094 | 22589504 | 2006-01-08 08:00:00 | 2006-01-08 09:00:02
150.145.80.101 | 14779 | 6913855 | 2006-01-08 07:00:00 | 2006-01-08 08:01:01

(10 rows)

Network traffic data, the SQL way:
what about “top N” ?

shell> psql –U pmacct –c “SELECT port_dst, ip_proto, packets, bytes \
FROM dst_ports_db \
WHERE dst_src = '150.145.80.101' AND \
stamp_inserted = '2006-01-09 12:00:00‘ \
ORDER BY bytes DESC
LIMIT 10;”

port_dst | ip_proto | packets | bytes
------------+------------+------------+-----------------

119 | 6 | 1084915 | 1594897858
25 | 6 | 385883 | 374188510
80 | 6 | 24632 | 26649410

110 | 6 | 14595 | 15556361
22 | 6 | 10775 | 13201890

443 | 6 | 2943 | 1929708
143 | 6 | 911 | 1111241

53 | 1 | 607 | 879218
995 | 6 | 9399 | 541329

20 | 6 | 140 | 188855
(10 rows)

Network traffic data, the SQL way:
classification and “top N” !

shell> psql -U pmacct -c "SELECT class_id, packets, bytes, flows \
FROM acct_v5 \
ORDER BY bytes DESC \
LIMIT 10;"

class_id | packets | bytes | flows
------------------+----------------+--------------------+--------------

nntp | 533424546 | 534913922183 | 13480
http | 567179034 | 409970727835 | 22581928
smtp | 336913736 | 116445824169 | 17286471
ssh | 139908289 | 108291107166 | 1110903
edonkey | 167213900 | 107343376842 | 4501937
ftp | 197626712 | 97059417721 | 139749
pop3 | 86367951 | 60221933775 | 1462006
ssl | 62489714 | 34784217799 | 2602435
bittorrent | 52031296 | 31068910458 | 414216
rtsp | 20099589 | 9595494054 | 3959

(10 rows)

pmacct: results (I)
by Martin Pot, from RRDtool gallery

pmacct: results (II)
pmacct-fe screenshot (A)

pmacct: results (II)
pmacct-fe screenshot (B)

pmacct: results (III)
network weather maps with GWEN

A preview of FloX, the flow explorer
by Sven Anderson

Thank you for your attention !

http://www.pmacct.net

Paolo LUCENTE, paolo@pmacct.net

