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Abstract

Measuring and monitoring network traffic is of essential support to manage key operations in today’s complex

Internet backbones such as detecting hot spots, traffic engineering, usage-based pricing and gaining insight about

the composition of the traffic mix. However, actual large-scale networks are able to produce, in very short times,

huge amounts of data that quickly result difficult (either too slow or expensive) to be handled. Moreover, methods

to log periodically randomly sampled packets have shortcomings (inaccuracy among the others) that hinder the

analysis of traffic data; but sampling undoubtely allows to break the scalability barrier. Thus, a way to control

carefully the produced dataset is required: the ability to select, aggregate and group IP flows plays a prime role in

a today’s network monitoring and measurement tool. This paper is about pmacct, a set of tools to select, account

and aggregate IPv4 and IPv6 traffic; it endorses a simple aggregation method revolved around the basic concept of

communication primitives (e.g. source and destination IP addresses, IP protocol, ToS/DSCP field): by arbitrarily

reducing the set of primitives that unambiguously define a specific flow and by grouping flows logically, it is able

to merge micro-flows into bigger macro-flows on the basis of the exploited similarities between them. Having

summarized but still accurate reports of network activity, enables operators to gain a better understanding about

the status of the observed network infrastructure. pmacct aims to be portable across Unix flavours and efficient

in terms of resource management; to have minimal requirements to run and dependencies to satisfy; and finally

to give meaningful insight by allowing to characterize the detail level of the produced dataset.

I. INTRODUCTION

IP networks are rapidly growing, covering almost every corner of the planet pushed also by their attractive

wireless ’arm’, getting faster and jointly stressed by the increasing demand for broadband access from research

and educational institutions, offices, homes and co-location among the others in the global byte-hungry com-

munity. Moreover networks are plagued by a substantial background activity generated by Denial-of-Service

attacks, viruses, and e-mail spam. The increasing number of users exposes the connected networks to an high

replication factor of such activities and - thanks also to larger shares of bandwidth available per user (and a

somewhat fervent creativity) - widens largely the tipology of applications in use. While the times of sudden

hills in network graphs as unique fingerprint of past and unknown network behaviours are quite far in the

memories, the actual ability to have deep knowledge of individual flows travelling back and forth the end-users

is not of much help: the limit of a disruptive abundance of data to get through.

As a common result, for network operators is becoming even more important to obtain data which is ready

to be analyzed or correlated by reporting and presentation applications in order to gain valuable insight about

the network status, thus allowing to promptly extract the required informations. But because actual high-

speed, large-scale networks produce, in short times, big amounts of raw data that cannot be quickly processed,

it’s becoming more important being able to control the size and the quality of the produced dataset. Traffic

aggregation greatly alleviates the problem by reducing the set of primitives that define a specific flow and by



grouping flow primitives into larger network entities (for example individual IP addresses into either network

prefixes or Autonomous Systems); this methodology allows to merge micro-flows into bigger macro-flows, also

referred as aggregates, on the basis of the exploited similarities between them while continuing to preserve the

required traffic detail. Intuitively, the new degree of similarity between the flows is established by the number

of primitives into the reduced set. Summarized traffic reports are of valuable support for a range of critical

operations like but not limited to determining the busiest segments of the network, thresholding sudden network

events, monitoring the well-provisioning of the underlying infrastructure, SLA monitoring. Moreover, the ability

to tag packets offers the opportunity for the deployment of innovative billing schemes (e.g., location-based)

beyond the usage-based ones.

Some important requirements are at the root of a today’s good passive monitoring software design: speed

(the ability to deal smoothly high link rates), scalability (by allowing more sensors to work cooperatively in a

distributed fashion) and an high degree of flexibility (by allowing to characterize the details of the produced

dataset). pmacct has been developed with these goals in mind and more efforts have been pushed in developing

and mantaining a clean architecture that allows for quick processing of incoming network data basing also over

the observation that the computing speed will, in the very next future, no more compare favourably to network

speed, further reducing the number of cycles available before the next packet arrives (the cycle budget) which

is already almost minimal in today’s networks[6].

II. BRIEF CONCEPTS

Let’s give a definition of the primitives and their properties, applied to pmacct context:

• a primitive is a keyword that identifies a specific portion of the headers’ stack of a packet,

• each keyword is unique into the alphabet: no two keys are identified by the same name,

• each portion of the stack is represented by just one keyword and viceversa,

• the portion identified by a keyword is strictly disjoint by any other portion identified by another keyword.

A flow definition is made of a group of primitives, plus few counters (e.g., bytes and packets counter). Let’s

now define the concept of flow: it is a group of packets that share the same instantiation of the flow definition.

Basing on this, we will introduce the concept of flow aggregation as it is seen in pmacct. Let’s give our first

flow definition, µFlow, the following way:

µF low{src host, dst host, ip proto, src port, dst port, sum(bytes), sum(packets)}

in real world, such grouping may represent a typical unidirectional group of packets transiting through the

Internet and carrying a transport protocol like TCP or UDP. Let’s assume, for the ease of our discussion, that

values of both src host and dst host primitives are static; we will be able to obtain such behaviour by applying

a filter (going practical again, such filter would enable us to count the packets transiting between two specific

hosts). Then, generating some traffic for a time δ, we will populate Setα of j packets transiting between the

two hosts; by applying our µFlow definition to the produced Setjα, we will be able to classify its packets into

an x number of flows:

Setjα(µF low) = x



x is the cardinality of a new Setβ which is the set of all µFlows required to classificate the j packets into the

Setα. Let’s now give a new flow definition, λFlow, which is effectively a superset definition of µFlow. Let’s

apply it to the produced Setxβ:

λF low{src host, dst host, sum(bytes), sum(packets)},

Setxβ(λF low) = 1

As a result, shown above, now we will be able to further classify µFlows in our Setβ into a single flow, λFlow,

which represents the grand total of packets and bytes transferred between the two hosts. Therefore, we will

term this unique flow an aggregate or macro-Flow and the incremental process of casting packets in a Setα into

λFlows, an aggregation process. We may proceed with the above methodology to obtain arbitrary aggregates.

However, it’s important to notice that while the methodology itself allows to build arbitrary aggregates, in each

software (thus, including pmacct) these are limited by the set of supported primitives (pmacct ones are listed

in the Section X, Appendix A).

III. ARCHITECTURE OVERVIEW

pmacct daemons, pmacctd and nfacctd, sport a modular architecture which relies over a multi-process

organization and a strict separation between the two main daemon operations: packet gathering and packet

processing. The module which focuses on gathering packets from the netwrok is termed core process or simply

core; it is also in charge of a few additional tasks including filtering, pre-tagging and sampling. One or more

modules are employed in packet processing and are termed plugin instances or simply plugins. Each plugin

communicates with the Core process, through a private shared memory segment which, along with its state

variables and pointers, is termed communication channel or simply channel. It is structured as a circular queue

of arbitrary size further divided in a number of chunks or buffers: as soon as a buffer gets filled up with fresh

data, it’s assigned to the plugin and the next buffer is used. The plugin is adviced that new data are available on

the queue through an Out-Of-Band (OOB) signallation queue which is socket-based and is allocated a fraction

of the size of the main queue. It’s important to notice that not each buffer transiting from the Core process to

the plugin is signalled through the OOB queue: the plugin, in fact, is able to get the Core process aware whether

it’s actually blocked waiting for new data to be available or it’s still processing some backlogged buffer; if the

Core process is able to fill the new buffer while the plugin is processing the previous one, it will not signal

new buffer assignations: when the plugin will finish to process the old buffer, it will check for the arrival of

new data before going to sleep again instead. While this mechanism have shown almost no benefits when few

packets are processed, it has greatly helped in reducing the pressure over the kernel (because it effectively

avoids to cross the userspace-kernel boundary) when exposed to heavy traffic rates.

The process of aggregating network data is distributed between the Core process and the plugin: the former

applies the proper flow definition, the last is in charge of counters’ accumulation and historical breakdown. In

the next subsections we will see the working principles of the modules described above.



Fig. 1. daemon architecture overview

A. Inside the Core process

The Core process is broken in two parts: an upper one which collects data coming from the network and a

lower one that handles plugin-related operations: it frames packets into aggregates, applies fine-grained filters,

recollects resources if a plugin dies and has control on both (main and OOB) communication channels. While

the last one is common for the two daemons - nfacctd and pmacctd - the former is distinct, thus implying

the existence of two executables. This hard separation has been preferred following the consideration that each

packet capturing framework (e.g., libpcap[1], [2]) and export protocol (e.g., NetFlow[4], sFlow) need peculiar

operations in order to parse encapsulated data: for example, NetFlow v9[8] requires that packets have to be

dissected basing over previously sent templates; libpcap instead captures a specified portion of each packet,

prepending them an header which contains informations about the allocated buffer without offering any further

support, so, IP packet fragmentation is entirely on the shoulder of the consumer application.

However, it’s also important to notice few facts:

• the hard separation makes pmacct easily extendible to other export protocols, packet capturing frameworks

and storage backends,

• because the lower part of the Core is common, it works effectively as an abstraction layer,

• writing a new Core will just require to write the new specific upper part,

• writing a new plugin, will just require to implement the common hooking interface to let it work in

conjunction with all available Cores.

The Core process pipeline has been leaved as fast as possible, for example preferring pre-arranged routine

pointers to conditionals, though few additional operations are handled on the critical path. The intuitive reasons

beyond such choice are: a) the operation is of global scope thus doing it elsewhere would lead to resource

wasting by repeating it multiple times unnecessarily, b) pushing an unuseful packet too deep in the pipeline

stages would result in even worse effects.

1) The upper part, pmacctd: pmacctd acquires network traffic data using the well-known libpcap framework.

pmacctd is also able to request filtering capabilities from the producer library: being usually placed directly

into the kernel, this kind of filter is lightning fast; however its global scope makes this filtering tier of limited



Fig. 2. Modularization overview

use. This is because the underlying abstraction layer supports a fine-grained second filtering tier.

The assembly line starts once a new packet is received; pmacctd validates it and sets base pointers to protocol

headers until the transport layer (e.g., TCP, UDP): because almost all following operations will need to deal

with specific header fields, such initial book-keeping activity will avoid later on searches through the full buffer

body. The network layer (IPv4, IPv6) is handled properly, taking care of fragmentation; the newly arranged

structure is then passed to the abstraction layer entry point, the exec plugins() function.

2) The upper part, nfacctd: nfacctd acquires network traffic data by analyzing Cisco NetFlow packets sent to

it from one or more exporting agents (e.g., NetFlow-enabled network equipments, NetFlow probes). The daemon

first checks whether the agent is allowed to talk to it, then applies Pre-Tagging (which will be discussed more

in deep later): it briefly allows to assign an ID (a small positive integer) comparing one or multiple fields of

the NetFlow packet, such as the incoming or outcoming interface or the engine that have generated the packet,

with an user supplied Pre-Tag Map. nfacctd is able to handle multiple versions of the NetFlow protocol at

once so that not all exporters are forced to talk the same version. Once the NetFlow packet is validated and

its version is recognized successfully, it is dissected by the proper routine. Each flow extracted successfully is

then sent to the abstraction layer entry point, the exec plugins() function.

3) The lower part, the abstraction layer: all operations in this layer are based over the set of pointers

arranged by the upper part. Apart from the architectural consideration already done previously, the main tasks

of the abstraction layer are to frame incoming data into aggregates, apply the second tier filters and feed the

buffers to the attached plugins, turning in a round-robin fashion among the active circular queues. The flexible

filtering capabilities available here allow to assign each plugin two different filters, one that matches Pre-Tags

(if any) and the other that matches against a libpcap expression.



B. Inside the Plugins

Each plugin reads the packed buffers - containing the aggregates - sent by the Core process from its

communication channel. The reception is quite straightforward: the plugin blocks until the arrival of new data

is signalled through the OOB channel; once a new buffer is ready to be processed, the aggregates contained into

it are processed sequentially. Then, before going to sit again, waiting for a new signal, the plugin will check

whether a new buffer has already arrived in the meanwhile; if this is the case it will get processed immediately.

The plugins are differentiated by the backend they use to store data. The following sections will present an

overview of the In-Memory Table (IMT) plugin and the SQL one1.

1) the In-Memory Table (IMT) plugin: stores aggregates into a memory structure, organized as an hash table.

Such table is divided in a number of buckets and aggregates are direct-mapped to a bucket by the mean of

a modulo function. Collisions in each bucket are solved building collision chains, organized as linked-lists.

An auxiliar structure, a LSU cache (Last Recently Used), is provided to speed up searches and updates into

the main table. The LSU saves last updated or searched element for each bucket: when a new operation on

the bucket is required, the LSU cache is compared first; if it doesn’t match, the collision chain gets traversed

instead. Memory is requested from the underlying operating system in large chunks, called memory pools,

to limit as possible the bad effects (e.g., trashing) that could derive from the dispersion through the memory

pages of much more frequent tiny allocations. Memory pools are tracked via a linked list of descriptors to ease

maintenance operations such as freeing unused memory.

Data stored into the memory structure can be accessed by a client tool communicating with the daemon

through a Unix Domain socket. The queries may be atomic (they contain just a single request) or batch,

allowing a single query to encapsulate up to 4096 requests. The available query types are ’bulk data retrieval’,

’group data retrieval’ (partial match), ’single entry retrieval’ (exact match) and ’erase table’. Additionally both

partial and full matches may supply a request for resetting the counters for the matched entries. The client query

is evaluated by the plugin: requests that need just a short stroll through the memory structure are served by the

plugin itself, the others (for example batch queries or bulk data retrieval) are fulfilled by a new process spawned

by the plugin. Moreover, locks have been implemented to guarantee a successful cohesistence of long-lived

queries and mutual-exclusive operations like full table erasure. Some batch queries may be fragmented by the

operating system because exceeding the actual socket size. They will require a reassembly process for which is

in charge the plugin as soon as it receives a \x4 End of Message placeholder. Whether an incomplete message

is received, it is discarded when the associated timeout expires.

2) the SQL plugin: stores aggregates into a direct-mapped cache, organized as an hash table. Such mapping

is computed via a modulo function; if the bucket already contains valid data, the conflict is solved with the use

of collision chains: the chain gets traversed and whether it does not contain any unused element, a new one

is appended at the tail. New nodes are allocated exploring two chances: if any node has been marked stale (it

happens when an allocated node is unused for some consecutive timeslots) it’s reused by unlinking it from its

1As today, two distinct SQL plugins enable pmacct to operate with MySQL and PostgreSQL databases. However from the perspective

of this document, this difference is not relevant. This is because we will refer to a generic SQL plugin.



old chain and then linking it to the current one; if no free nodes are available then a new one is created. Stale

nodes are then retired (that is, unallocated) if they still remain unused for longer times (RETIRE TIME**2).

To speed up lookups of candidate nodes for reallocation and retirement, an additional LRU list of allocated

nodes is mantained.

The cache is also used for accumulation of counters and their historical breakdown. Aggregates are pushed

into the DB at regular intervals; to speed up such operation, a queue of all pending aggregates is mantained as

nodes are touched (either used or reused), avoiding long walks throught the whole memory structure. Actual

data (aggregates) are framed into SQL queries which are sent to the DB. Because in this moment is not known

whether an INSERT query would create a duplicate, an UPDATE query is launched first and if no rows are

affected, the INSERT query is trapped. pmacct allows to revert this default behavior (it could be correct under

certain circumstances), skipping directly to the INSERT query. When the purging event is finished, aggregates

in the cache are not unallocated but simply marked as invalid: while data coherence is preserved, we greatly

avoid to waste CPU cycles.

The SQL approach is undoubtely fashinating because it opens new chances for advanced operations like data

correlation, trapping of alerts by thresholding specific network events, etc. However the added value of SQL

flexibility has an high price in terms of performance constraints and resources consumed. This argument will

be described in the following section The SQL limits.

Moreover, the health of the database server is ensured by checking for the successful result of each SQL

query. Whether the DB becomes unresponsive, a recovery flag is raised. It remains valid, avoiding further

checks, for the entire purging event. If transactions are being involved, an additional reprocess flag is raised:

it signals that all SQL queries already sent successfully have to be reprocessed because the actual transaction

will never get finalized. The actions available to recover data are two:

• aggregates are written into a structured logfile saved on the disk: a logfile is made of (a) an header which

contains some configuration parameters, (b) a template header which contains the description of the record

structure, followed by (c) records dumped by the plugin; the logfile may be handled a posteriori by the

mean of the two player tools available: pmmyplay and pmpgplay. The template has been thought to solve

backward compatibility issues: in fact, the record structure is very likely to change over the time, as new

primitives may be introduced.

• aggregates are written to a backup database server.

IV. TAGGING PACKETS

The ability to tag aggregates is undoubtely one of the most powerful features offered by pmacct. Tagging

is broken down into two parts, called Pre-Tag and Post-Tag. Pre-Tagging is done in the upper part of the

Core proccess and it’s actually available only in nfacctd while it’s leaved as future work its implementation

in pmacctd; Post-Tagging is done into the lower part - the abstraction layer - thus it works for both daemons.

Pre-Tagging is done shortly after the NetFlow packet has been validated and unrolled: by looking up an user-

supplied Pre-Tag map and comparing the map values with those in the NetFlow packet, nfacctd assigns a

small positive integer, called ID, to the flow currently analyzed. Also valuable are the added Pre-Tag filtering



capabilities available in the abstraction layer. Post-Tag is not based on any lookup but fixed and assigned to

a specific plugin so that each aggregate assigned to it, is marked properly. The Post-Tagging stage is reached

after the aggregate has passed all filters, if any.

V. FILTERING PACKETS

Each active plugin is applied an aggregate definition. But it’s important being able to control which traffic

is assigned to which plugin; it could be desirable to apply the aggregate definition only to a specific fraction

of the network traffic; this is a rather common case even in the most simple scenarios: for example, to split

incoming from outcoming traffic it’s required a pair of reverse filters. Core process abstraction layer sports two

kind of filters aimed to satisfy such needs: one matches a libpcap expresson, the other matches the Pre-Tag

assigned by the upper part. This last filter, because of the intrinsic logical value of a Pre-Tag, is greatly useful

allowing to deal with even more advanced scenarios than the one presented above; in fact, by the mean of

a simple integer comparison, it allows to spread the aggregates among the plugins, for example, to generate

traffic matrices between interfaces, intercept the traffic directed to a specific link or to point out how multiple

interfaces compare in terms of traffic generated.

VI. THE SQL LIMITS

SQL gives unparalled chances to combine, compare and analyze data but exposes some hard limits when

applied to actual network traffic rates. Mantaining the database consistent and healty is a prime need and

requires the use of mechanisms like transactions and indexes that have a considerable impact in terms of

resource consumption and which impact may also scale negatively when the number of tuples stored into

the database itself become huge. This is because both SQL plugins sport a memory cache; however often it

does not suffice: in fact the cost of building and firing over the network a tiny packet (e.g., by a malicious

user) is much cheaper compared to the cost of accounting such packet into the database. pmacct has a way

to preprocess the purging event - when the memory cache is purged and SQL queries are created - effectively

thresholding the impact that an enormous amount of SQL queries may have on the database. The queries may

be just discarded or recovered temporarily to the disk, allowing to be analyzed, processed and finally sent to

the DB a posteriori. This quantitative method has been preferred - leaving new approaches as future works -

being not fully convinced by its direct alternative, a simple-systematic tail-dropping one (e.g., pick the first N

toptalkers): thresholding hardly some specific aggregate value may alter consistently the quality of the dataset.

VII. FUTURE WORKS

While many efforts have already been spent to let the software to converge quickly to a stable and usable

phase, much work remains still to do. Experimental results have demonstrated, as result of previous works[3],

that a small number of heavy talkers account the largest share of traffic: this leave great chances to novel

paradigms that concentrate only on macro-flows, defined in this context as those flows that exceed some

threshold when compared to the total bandwidth available at a specific link. Such methods may endorse the

concept of scalability while limiting the loss of accuracy[5], [7]. Moreover, recently there has been a wide



flourishing of interesting works in fields related to the network passive monitoring such as promising packet

capturing frameworks and exporting protocols (e.g., IPFIX[10], [9]). The perspective would be to integrate

pmacct with them.

Some interesting issues are still in the wild either requiring a comprehensive solution or further experimental

results which may in turn drag to novel approaches; among them the SQL barrier, a refined sampling tier and a

content-based Pre-Tagging scheme. A separate paper will cover broadly - in very next future - sampling topics

and scenarios which are currently under evaluation.

VIII. AVAILABILITY

pmacct is distributed free of charge and under GPLv2 licence. It can be downloaded from the pmacct

homepage: http://www.ba.cnr.it/˜paolo/pmacct/ . Some Linux distributions and FreeBSD have

already included pmacct in their userland software.
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X. APPENDIX A

The list of primitive codes supported by pmacct, along with their description is shown in the following table:

Primitive code Description

src mac Source MAC (Physical) address

dst mac Destination MAC (Physical) address

vlan VLAN id

src host Source IP address

dst host Destination IP address

tos DSCP / IPv4 Type of Service / IPv6 Class of Service

proto Transport layer protocol

src port Source UDP/TCP port

dst port Destination UDP/TCP port

src net* Source network prefix

dst net* Destination network prefix

src as* Source Autonomous system

dst as* Destination Autonomous system

sum host! Sum of incoming and outcoming traffic per IP address

sum net*! Sum of incoming and outcoming traffic per network prefix

sum as*! Sum of incoming and outcoming traffic per Autonomous system

sum port! Sum of incoming and outcoming traffic per UDP/TCP port

none Enable no primitives: make global counters per interface



* The primitive requires requires the definition of a networks lookup map to work correctly.

! The primitive is mutually exclusive.
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