
pmacct: introducing BGP natively 
into a NetFlow/sFlow collector

Paolo Lucente

UKNOF #14 meeting, London, 11th Sep 2009

Paolo Lucente
the pmacct project | AS286
<paolo at pmacct dot net>

http://www.pmacct.net/



Agenda
I. Introduction

II. Recent developments

pmacct: introducing BGP natively 
into a NetFlow/sFlow collector

II. Recent developments

UKNOF #14 meeting, London, 11th Sep 2009



pmacct is open-source, free, GPL’ed software



pmacct: where is it sitting?



pmacct: typical usage scenarios



Agenda
I. Introduction

II. Recent developments

pmacct: introducing BGP natively 
into a NetFlow/sFlow collector

II. Recent developments

UKNOF #14 meeting, London, 11th Sep 2009



The BGP peer who came from
NetFlow (and sFlow)

– pmacct introduces a Quagga-based BGP daemon
 Implemented as a parallel thread within the collector
 Doesn’t send UPDATEs and WITHDRAWs whatsoever
 Behaves as a passive BGP neighbor Behaves as a passive BGP neighbor
 Maintains per-peer BGP RIBs
 Supports 32-bit ASNs
 Supports both IPv4 and IPv6

– Joins NetFlow (or sFlow) and BGP data basing on:
 NetFlow source address == BGP source address



The BGP peer who came from
NetFlow (and sFlow) (cont.d)

– Relevant implementation details:
 Bases on trust: peers are not defined but a max 

number of peers who can connect is defined instead
 Ensures iBGP peering by presenting itself as part of  Ensures iBGP peering by presenting itself as part of 

the AS of the neighbor, as read in the OPEN message
 Enables the following traffic aggregation primitives: 

AS path, Local Preference, MED, Peer ASNs (freely 
mixed with origin ASNs), Communities, Peer IPs    

– Caveats:
 BGP multi-path is not supported



The BGP peer who came from
NetFlow (and sFlow) illustrated



Theory applied, SQL example (1/3)
shell> cat pmacct-create-db_bgp_v1.mysql

[ … ]

create table acct_bgp (

agent_id INT(4) UNSIGNED NOT NULL,

as_src INT(4) UNSIGNED NOT NULL,

as_dst INT(4) UNSIGNED NOT NULL,

peer_as_src INT(4) UNSIGNED NOT NULL,

peer_as_dst INT(4) UNSIGNED NOT NULL,

peer_ip_src CHAR(15) NOT NULL,

peer_ip_dst CHAR(15) NOT NULL,
BGP
Fields

Tag

shell> cat pretag.map
id=100  peer_src_as=<customer>

comms CHAR(24) NOT NULL,

as_path CHAR(21) NOT NULL,

local_pref INT(4) UNSIGNED NOT NULL,

med INT(4) UNSIGNED NOT NULL,

packets INT UNSIGNED NOT NULL,

bytes BIGINT UNSIGNED NOT NULL,

stamp_inserted DATETIME NOT NULL,

stamp_updated DATETIME,

PRIMARY KEY (…)

);

shell> mysql -u root -p < pmacct-create-db_bgp_v1.mysql

Fields

Counters

Time

shell> cat peers.map
id=65534 ip=X in=A
id=65533 ip=Y in=B src_mac=J
id=65532 ip=Z in=C bgp_nexthop=W
[ … ]

id=100  peer_src_as=<customer>
id=80   peer_src_as=<peer>
id=50   peer_src_as=<IP transit>
[ … ]



Theory applied, SQL example (2/3)
• See traffic delivered to a specific BGP peer
mysql> SELECT  peer_as_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE peer_as_dst = <peer | customer | IP transit> \

GROUP BY peer_as_dst

• Same as above but also per location if peering at • Same as above but also per location if peering at 
multiple places

mysql> SELECT  peer_as_dst, peer_ip_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE peer_as_dst = <peer | customer | IP transit> \

GROUP BY peer_as_dst, peer_ip_dst

• Simply replace “dst” with “src” in the above 
examples to see incoming traffic 



Theory applied, SQL example (3/3)
• See outgoing traffic breakdown to all BGP peers 

of the same kind (ie. peers, customers, transit) 
mysql> SELECT  peer_as_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE local_pref = <<peer | customer | IP transit> pref> \

GROUP BY peer_as_dstGROUP BY peer_as_dst



Why integrating BGP at the collector?

– One might argue validity of the work: “hey, 
this all could have been done at the router!”.

– Maintaining per-peer BGP RIBs at the collector 
has several advantages; some implemented:has several advantages; some implemented:
 Follow default route, having the BGP RIB of the 

default gateway of a PE with partial BGP view or 
default-only 
 Decouple NetFlow from BGP by mapping NetFlow 

agents to BGP peers
 Give better chances to the source peer-AS  (later)



Miscellaneous features implemented
– AS Path radius:
 AS PATHs can get long. This can easily get counter 

productive (ie. waste space)
 Cuts AS Path down to the specified number of AS 

hops. Assumption: people might be more hops. Assumption: people might be more 
interested into what happens around them.

– Communities pattern filter
 IP prefixes can have many communities attached
 Only a small subset might be relevant to the 

accounting infrastructure
 Hence filtering capabilities are made available



The source peer AS issue
– Traffic is traditionally routed to destination
– Problem #1: limited information about where 

traffic enters the AS domain. Applying this to 
traditional NetFlow it means: either origin traditional NetFlow it means: either origin 
ASNs OR peer ASNs

– Problem #2: asymmetric routing. Applying this 
to traditional NetFlow it means: FIB lookup on 
the source prefix; result: source peer AS is 
where traffic should have entered the AS 
domain, if it was symmetrical.



The source peer AS issue mitigated
– Having per-peer BGP RIBs on-board paves the 

way to capture both origin AND peer ASNs
– Source peer AS is statically mapped against:
 A whole port, ie. input port field. A whole port, ie. input port field.
 Source MAC address. Should be the way to go and 

depends on NetFlow v9 or sFlow. 
 BGP next-hop lookup against the source prefix:

• Only choice if running NetFlow v5 in scenarios where 
multiple peers are off a single port (ie. IXP)

• Accuracy is not really predictable
• Combine with input port to limit false positives



Auto-discovery of source peer ASNs
– Mix of: SNMP, “bgp_neighbors_file” feature and 

pmacct maps reloadable at runtime:
 Fetch all eBGP peers from bgpPeerTable
 Having local IP addresses fetch ifIndex from ipAddrTable
 Detect multiple eBGP peers (ie. IXP scenarios) off the  Detect multiple eBGP peers (ie. IXP scenarios) off the 

same (sub-)interface so that src_mac or bgp_nexthop 
can be appended. For example, check netmask length
 Detect eBGP multi-hops by checking ifIndex against 

Loopback interfaces. If true, resolve in ipCidrTable 

– Establish a small set of rules within your group, ie. 
when setting interface descriptions (ifAlias)



Auto-discovery of source peer ASNs

Router 
configuration 

template

bgpPeerTable then 
ie. ipAddrTable

post-processing
(ie. ipCidrTable)

…
router bgp 65530
neighbor X remote-as 65530
neighbor X source-address 1.1.1.1

shell> snmpwalk –c secret … \
1.1.1.1 bgpPeerTable

bgp_max_peers: 100
bgp_neighbors_file: routers.list

ie. ipAddrTable

ifAlias

bgp_peer_as_src_map: peers.map
(reloadable at runtime)

shell> cat  routers.list
1.1.1.1
...

shell> cat peers.map
id=65534 ip=1.1.1.1 in=1

neighbor X source-address 1.1.1.1
…



The case of entities on the provider
IP address space

– For such entities:
 AS PATH would be empty;
 origin and peer ASNs would be NULL.

– Problem: how to recognize them?– Problem: how to recognize them?
– Include IP prefix information in the DB structure: 

cumbersome and wouldn’t scale.
– Split approach:
 Source: map ifIndexes or MAC addresses to peer AS
 Destination: rely on BGP communities 



The case of entities on the provider
IP address space (cont.d)

– Ad-hoc feature (bgp_stdcomm_pattern_to_asn):
 Prerequisite: entities on the provider IP address space 

get tagged with a standard BGP community. You are in 
full control of the granularity of the assignment.full control of the granularity of the assignment.
 pmacct config: bgp_stdcomm_pattern_to_asn: XXX:Y..
 Say, an entity is tagged with community XXX:YYY; XXX 

value is mapped to the peer AS; YYY value is mapped to 
the origin AS.
 Works transparently for both sources and destinations; 

in future can make use of extended BGP communities.



Miscellaneous implementation details
– A BGP RIB of ~275-290K entries accounts for 

some 35-40MB of memory. Multiply this by 
the number of peers giving the full table.

– Attributes table is shared amongst all the RIBs; – Attributes table is shared amongst all the RIBs; 
it typically takes ~10MB of memory. 

– BGP RIB implements a binary tree; attributes 
table implements hashing.

– RIB entries have pointers to attributes; once 
an attribute is not referenced by any RIB entry, 
it is removed.



Thanks for your attention!

Questions?

pmacct: introducing BGP natively 
into a NetFlow/sFlow collector

Paolo LucentePaolo Lucente
the pmacct project | AS286
<paolo at pmacct dot net>

http://www.pmacct.net/

UKNOF #14 meeting, London, 11th Sep 2009


