
pmacct: introducing BGP natively
into a NetFlow/sFlow collector

Paolo Lucente

UKNOF #14 meeting, London, 11th Sep 2009

Paolo Lucente
the pmacct project | AS286
<paolo at pmacct dot net>

http://www.pmacct.net/

Agenda
I. Introduction

II. Recent developments

pmacct: introducing BGP natively
into a NetFlow/sFlow collector

II. Recent developments

UKNOF #14 meeting, London, 11th Sep 2009

pmacct is open-source, free, GPL’ed software

pmacct: where is it sitting?

pmacct: typical usage scenarios

Agenda
I. Introduction

II. Recent developments

pmacct: introducing BGP natively
into a NetFlow/sFlow collector

II. Recent developments

UKNOF #14 meeting, London, 11th Sep 2009

The BGP peer who came from
NetFlow (and sFlow)

– pmacct introduces a Quagga-based BGP daemon
 Implemented as a parallel thread within the collector
 Doesn’t send UPDATEs and WITHDRAWs whatsoever
 Behaves as a passive BGP neighbor Behaves as a passive BGP neighbor
 Maintains per-peer BGP RIBs
 Supports 32-bit ASNs
 Supports both IPv4 and IPv6

– Joins NetFlow (or sFlow) and BGP data basing on:
 NetFlow source address == BGP source address

The BGP peer who came from
NetFlow (and sFlow) (cont.d)

– Relevant implementation details:
 Bases on trust: peers are not defined but a max

number of peers who can connect is defined instead
 Ensures iBGP peering by presenting itself as part of Ensures iBGP peering by presenting itself as part of

the AS of the neighbor, as read in the OPEN message
 Enables the following traffic aggregation primitives:

AS path, Local Preference, MED, Peer ASNs (freely
mixed with origin ASNs), Communities, Peer IPs

– Caveats:
 BGP multi-path is not supported

The BGP peer who came from
NetFlow (and sFlow) illustrated

Theory applied, SQL example (1/3)
shell> cat pmacct-create-db_bgp_v1.mysql

[…]

create table acct_bgp (

agent_id INT(4) UNSIGNED NOT NULL,

as_src INT(4) UNSIGNED NOT NULL,

as_dst INT(4) UNSIGNED NOT NULL,

peer_as_src INT(4) UNSIGNED NOT NULL,

peer_as_dst INT(4) UNSIGNED NOT NULL,

peer_ip_src CHAR(15) NOT NULL,

peer_ip_dst CHAR(15) NOT NULL,
BGP
Fields

Tag

shell> cat pretag.map
id=100 peer_src_as=<customer>

comms CHAR(24) NOT NULL,

as_path CHAR(21) NOT NULL,

local_pref INT(4) UNSIGNED NOT NULL,

med INT(4) UNSIGNED NOT NULL,

packets INT UNSIGNED NOT NULL,

bytes BIGINT UNSIGNED NOT NULL,

stamp_inserted DATETIME NOT NULL,

stamp_updated DATETIME,

PRIMARY KEY (…)

);

shell> mysql -u root -p < pmacct-create-db_bgp_v1.mysql

Fields

Counters

Time

shell> cat peers.map
id=65534 ip=X in=A
id=65533 ip=Y in=B src_mac=J
id=65532 ip=Z in=C bgp_nexthop=W
[…]

id=100 peer_src_as=<customer>
id=80 peer_src_as=<peer>
id=50 peer_src_as=<IP transit>
[…]

Theory applied, SQL example (2/3)
• See traffic delivered to a specific BGP peer
mysql> SELECT peer_as_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE peer_as_dst = <peer | customer | IP transit> \

GROUP BY peer_as_dst

• Same as above but also per location if peering at • Same as above but also per location if peering at
multiple places

mysql> SELECT peer_as_dst, peer_ip_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE peer_as_dst = <peer | customer | IP transit> \

GROUP BY peer_as_dst, peer_ip_dst

• Simply replace “dst” with “src” in the above
examples to see incoming traffic

Theory applied, SQL example (3/3)
• See outgoing traffic breakdown to all BGP peers

of the same kind (ie. peers, customers, transit)
mysql> SELECT peer_as_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE local_pref = <<peer | customer | IP transit> pref> \

GROUP BY peer_as_dstGROUP BY peer_as_dst

Why integrating BGP at the collector?

– One might argue validity of the work: “hey,
this all could have been done at the router!”.

– Maintaining per-peer BGP RIBs at the collector
has several advantages; some implemented:has several advantages; some implemented:
 Follow default route, having the BGP RIB of the

default gateway of a PE with partial BGP view or
default-only
 Decouple NetFlow from BGP by mapping NetFlow

agents to BGP peers
 Give better chances to the source peer-AS (later)

Miscellaneous features implemented
– AS Path radius:
 AS PATHs can get long. This can easily get counter

productive (ie. waste space)
 Cuts AS Path down to the specified number of AS

hops. Assumption: people might be more hops. Assumption: people might be more
interested into what happens around them.

– Communities pattern filter
 IP prefixes can have many communities attached
 Only a small subset might be relevant to the

accounting infrastructure
 Hence filtering capabilities are made available

The source peer AS issue
– Traffic is traditionally routed to destination
– Problem #1: limited information about where

traffic enters the AS domain. Applying this to
traditional NetFlow it means: either origin traditional NetFlow it means: either origin
ASNs OR peer ASNs

– Problem #2: asymmetric routing. Applying this
to traditional NetFlow it means: FIB lookup on
the source prefix; result: source peer AS is
where traffic should have entered the AS
domain, if it was symmetrical.

The source peer AS issue mitigated
– Having per-peer BGP RIBs on-board paves the

way to capture both origin AND peer ASNs
– Source peer AS is statically mapped against:
 A whole port, ie. input port field. A whole port, ie. input port field.
 Source MAC address. Should be the way to go and

depends on NetFlow v9 or sFlow.
 BGP next-hop lookup against the source prefix:

• Only choice if running NetFlow v5 in scenarios where
multiple peers are off a single port (ie. IXP)

• Accuracy is not really predictable
• Combine with input port to limit false positives

Auto-discovery of source peer ASNs
– Mix of: SNMP, “bgp_neighbors_file” feature and

pmacct maps reloadable at runtime:
 Fetch all eBGP peers from bgpPeerTable
 Having local IP addresses fetch ifIndex from ipAddrTable
 Detect multiple eBGP peers (ie. IXP scenarios) off the Detect multiple eBGP peers (ie. IXP scenarios) off the

same (sub-)interface so that src_mac or bgp_nexthop
can be appended. For example, check netmask length
 Detect eBGP multi-hops by checking ifIndex against

Loopback interfaces. If true, resolve in ipCidrTable

– Establish a small set of rules within your group, ie.
when setting interface descriptions (ifAlias)

Auto-discovery of source peer ASNs

Router
configuration

template

bgpPeerTable then
ie. ipAddrTable

post-processing
(ie. ipCidrTable)

…
router bgp 65530
neighbor X remote-as 65530
neighbor X source-address 1.1.1.1

shell> snmpwalk –c secret … \
1.1.1.1 bgpPeerTable

bgp_max_peers: 100
bgp_neighbors_file: routers.list

ie. ipAddrTable

ifAlias

bgp_peer_as_src_map: peers.map
(reloadable at runtime)

shell> cat routers.list
1.1.1.1
...

shell> cat peers.map
id=65534 ip=1.1.1.1 in=1

neighbor X source-address 1.1.1.1
…

The case of entities on the provider
IP address space

– For such entities:
 AS PATH would be empty;
 origin and peer ASNs would be NULL.

– Problem: how to recognize them?– Problem: how to recognize them?
– Include IP prefix information in the DB structure:

cumbersome and wouldn’t scale.
– Split approach:
 Source: map ifIndexes or MAC addresses to peer AS
 Destination: rely on BGP communities

The case of entities on the provider
IP address space (cont.d)

– Ad-hoc feature (bgp_stdcomm_pattern_to_asn):
 Prerequisite: entities on the provider IP address space

get tagged with a standard BGP community. You are in
full control of the granularity of the assignment.full control of the granularity of the assignment.
 pmacct config: bgp_stdcomm_pattern_to_asn: XXX:Y..
 Say, an entity is tagged with community XXX:YYY; XXX

value is mapped to the peer AS; YYY value is mapped to
the origin AS.
 Works transparently for both sources and destinations;

in future can make use of extended BGP communities.

Miscellaneous implementation details
– A BGP RIB of ~275-290K entries accounts for

some 35-40MB of memory. Multiply this by
the number of peers giving the full table.

– Attributes table is shared amongst all the RIBs; – Attributes table is shared amongst all the RIBs;
it typically takes ~10MB of memory.

– BGP RIB implements a binary tree; attributes
table implements hashing.

– RIB entries have pointers to attributes; once
an attribute is not referenced by any RIB entry,
it is removed.

Thanks for your attention!

Questions?

pmacct: introducing BGP natively
into a NetFlow/sFlow collector

Paolo LucentePaolo Lucente
the pmacct project | AS286
<paolo at pmacct dot net>

http://www.pmacct.net/

UKNOF #14 meeting, London, 11th Sep 2009

