Waltzing on that gentle trade-off between internet routes and FIB space, an SDN story *(2016 deluxe edition)*

David Barroso <dbarrosop@dravetech.com>
Paolo Lucente <paolo@pmacct.net>

ESNOG 17 meeting, Barcelona – May 2016
Forewords

• Academia teaches us that long, seemingly complex, titles is cool
• We refer here to a project that spanned in time across years 2014 and 2015
• This is something you can call SDN; aim is to foster ideas for other use-cases
• All what we are going to speak is public:
 – https://github.com/dbarrosop/sir
 – http://www.pmacct.net/
About the presenters

• **David Barroso**
 – Network Systems Engineer @Fastly
 (back then Network Engineer @Spotify)
 – 10+ years in the network industry
 – Python enthusiast
 – Automation junkie

• **Paolo Lucente**
 – Principal Software Developer @pmacct
 – 10+ years measuring and correlating traffic flows
 – Service Providers are his DNA
About Spotify (1/2)

Spotify is a commercial music streaming service providing digital rights management-restricted content from record labels [...] Paid "Premium" subscriptions remove advertisements and allow users to download music to listen to offline.

Over 60M active users per month, 15M paying subscribers, 30M+ songs, 28k songs added per day, available in 58 markets
About Spotify (2/2)

• Four major data centers:
 – Stockholm, London, Ashburn, San Jose

• Connected to some IXPs globally:
 – DE-CIX, NetNod, AMS-IX, LIX, Equinix Ashburn

• Users are directed to the *best possible* DC:
 – A combination of techniques is used as a metric
 – In case of fault or maintenance users can be redirected to another DC
FIB vs RIB (1/2)

• RIB (Routing Information Base)
 – A representation in memory of all available paths and their attributes
 – This information is fed by routing protocols

• FIB (Forwarding Information Base)
 – A copy of the RIB (usually in hardware) where some attributes are resolved (like next-hop or outgoing interface)
FIB vs RIB (2/2)

- **RIB (Routing Information Base)**
 - Virtually unlimited (limited only by the memory of the device)

- **FIB (Forwarding Information Base)**
 - Limited by the underlying hardware
The Internet

- +500k prefixes
- Too many to fit them in commodity ASICs, ie.

 at the time of the project a typical switch
 would look like:
 - ~32,000 routes
 - As small as 1RU
 - 72 x 10G ports
 - 262 W
 - ~ 30,000 USD
When you travel ... (1/2)

• Do you carry an atlas?
• Or do you carry a local map?

So .. (granted I’m close to content or eyeballs, ie. I’m not in the business of routing the internet for 3\text{rd} parties):

• Why do I need all the prefixes?
• What if I only install the prefixes I really need?
When you travel ... (2/2)

• Example: Spotify datacenter in Stockholm
 – Total prefixes: ~519k
 – Prefixes from peers: ~150k
 – Average # of active prefixes per day: ~16k

• Example explained:
 – Spotify streams music to users
 – Users are typically served from the closest DC
 – Why would the Spotify DC in Stockholm need to specifically know how to reach users in San Jose?
Hypothesis and goal

• By analyzing traffic patterns we could lower the amount of prefixes up to the point where we could fit them into a switch

• In simplest term this can be reduced to a TopN problem, where N is the amount of routes the commodity ASIC can fit
Key components of the work

• **pmacct** - Collector that can aggregate traffic in a flexible way; BGP information can be obtained by peering with other routers

• **SIR** – an agent to expose information, ie. traffic per BGP prefix or traffic per ASN. This data is provided both via a WebUI and an API

• **Selective Route Download (SRD)** - Feature that allows to pick a subset of the routes on the RIB and install them on the FIB
Prototype overview (1/3)

- Transit will send the default route to the Internet Switch. The route is installed by default in the FIB.
- We receive from the IXP all the peers’ prefixes. Those are not installed, they are forwarded to pmacct.
- pmacct will receive in addition sFlow data.
• pmacct aggregates sFlow data using the BGP information previously sent by the Internet Switch
• pmacct reports the TopN* prefixes to the BGP Controller
• The BGP controller instructs the Internet switch to install those TopN* prefixes

1. These are the topN prefixes based on sFlow data.
2. Please, install these prefixes I got from pmacct.

* N is a number close to the maximum number of entries that the FIB of the Internet Switch can support
Prototype overview (3/3)

- Files containing sFlow
 - sFlow information is aggregated per prefix based on the BGP feed and stored into CSV files
 - bgpc.py reads Flow information and calculates TopN prefixes

- BGP feed in JSON
 - BGP feed is saved in JSON format
 - bgpc.py reads the BGP feed in JSON format

- pmacct
 - BGP and sFlow information

- bgpc.py

- Instructs Internet Router to install TopN prefixes

- Internet Router
Refactored prototype – SIR (1/2)
Refactored prototype – SIR (2/2)
Results from Stockholm DC prototype:
top 1k routes (1/4)
Results from Stockholm DC prototype:
top 5k routes (2/4)
Results from Stockholm DC prototype:
top 15k routes (3/4)
Results from Stockholm DC prototype:
top 30k routes (4/4)
Considerations

• The BGP controller updates a prefix list containing the prefixes that the device must take from the RIB and install on the FIB (that is, **selective route download** applied):

 – If a prefix is removed from the RIB it will be removed from the FIB by the device

 – If the BGP controller fails the prefix list remains in the device. Allowing the device to operate normally as per the last instructions
SIR use-cases: SD Peering Router
SIR use-cases: SD-CDN (1/2)

• Add metrics from other sources. Metrics like:
 – Cost of each link
 – Latency
 – Load of each site
 – Reliability

• Once all the data is in, say, Hadoop one could try to analyze global traffic patterns and metrics and distribute users to:
 – Minimize transit costs
 – Maximize capacity usage
 – Improve user experience
SIR use-cases: SD-CDN (2/2)
Thanks! Questions?

David Barroso <dbarrosop@dravetech.com>
Paolo Lucente <paolo@pmacct.net>

ESNOG 17 meeting, Barcelona – May 2016