

Waltzing on that gentle trade-off between internet routes and FIB space, an SDN story

David Barroso <dbarroso@spotify.com>
Paolo Lucente <paolo@pmacct.net>

Forewords

- Academia teaches us that long, seemingly complex, titles is cool
- This is not 1910's and we are not going to tell you we did split the atom, you can relax
- We were itching to speak either of Cloud, Big Data or SDN. We picked SDN.
- All what we are going to speak is public:
 - https://github.com/dbarrosop/sir
 - http://www.pmacct.net/

About the presenters

David Barroso

- Network Engineer @Spotify
- 10+ years in the network industry
- Python enthusiast
- Automation junkie

Paolo Lucente

- Principal Software Developer @pmacct
- 10+ years measuring and correlating traffic flows
- Service Providers are his DNA

About Spotify (1/2)

Spotify is a commercial music streaming service providing digital rights management-restricted content from record labels [...] Paid "Premium" subscriptions remove advertisements and allow users to download music to listen to offline.

About Spotify (2/2)

- Over 60M active users per month, 15M paying subscribers, 30M+ songs, 28k songs added per day, available in 58 markets
- Four major datacenters:
 - Stockholm, London, Ashburn, San Jose
- Users are directed to the closest datacenter:
 - In case of fault or maintenance users can be redirected to another DC

FIB vs RIB (1/2)

- RIB (Routing Information Base)
 - A representation in memory of all available paths and their attributes
 - This information is fed by routing protocols
- FIB (Forwarding Information Base)
 - A copy of the RIB (usually in hardware) where some attributes are resolved (like next-hop or outgoing interface)

FIB vs RIB (2/2)

- RIB (Routing Information Base)
 - Virtually unlimited (limited only by the memory of the device)
- FIB (Forwarding Information Base)
 - Limited by the underlying hardware
 - Between 64k-128k LPM prefixes in modern switches with commodity ASIC
 - Between 500k-1000k LPM prefixes in expensive routers/switches with customized ASICs

The Internet

- +500k prefixes
- Too many to fit them in commodity ASICs, ie.:
 - Trident 2 supports 32k prefixes
 - ARAD supports 64k prefixes

When you travel ... (1/2)

- Do you carry an atlas?
- Or do you carry a local map?

So .. (granted I'm close to content or eyeballs, ie. I'm not in the business of routing the internet for 3rd parties):

- Why do I need all the prefixes?
- What if I only install the prefixes I really need?

When you travel ... (2/2)

- Example: Spotify datacenter in Stockholm
 - Total prefixes: ~519k
 - Prefixes from peers: ~150k
 - Average # of active prefixes per day: ~16k
- Example explained:
 - Spotify streams music to users
 - Users are typically served from the closest DC
 - Why would the Spotify DC in San Jose need to specifically know how to reach users in Serbia?

Goal of our work

- Make a selection of "needed" routes from the RIB so to be able to fit them on the FIB of a switch with commodity ASICs
- In simplest term this can be reduced to a TopN problem, where N is the amount of routes the commodity ASIC can fit

Two key components of our work

- pmacct Collector that can aggregate traffic by network, AS, BGP peer, etc. BGP information can be obtained by peering with other routers (more later)
- Selective route download Feature that allows to pick a subset of the routes on the RIB and install them on the FIB.

Overview

- ■Transit will send the default route to the Internet Switch. The route is installed by default in the FIB
- •We receive from the IXP all the peers' prefixes. Those are not installed, they are forwarded to pmacct
- pmacct will receive in addition sFlow data

pmacct

- pmacct aggregates sFlow data using the BGP information previously sent by the Internet Switch
- pmacct reports the TopN* prefixes to the BGP Controller
- The BGP controller instructs the Internet switch to install those TopN* prefixes

^{*} N is a number close to the maximum number of entries that the FIB of the Internet Switch can support

Spotify AP

- •\$USER connects to the service
- The application informs the access point that \$USER has connected and requests that the \$PREFIX containing his/her \$IP is installed on the FIB
 - It might be installed already as another user within the same range might have connected previously or because pmacct reported that prefix as being one of the TopN prefixes
- The BGP controller instructs the Internet Switch to install the prefix if necessary

Internals

pmacct internals

pmacct: BGP integration

- pmacct introduced a Quagga-based BGP daemon
 - Implemented as a parallel thread within the collector
 - Doesn't send UPDATEs and WITHDRAWs whatsoever
 - Behaves as a passive BGP neighbor
 - Maintains per-peer BGP RIBs
 - Supports 32-bit ASNs; IPv4, IPv6 and VPN families
 - Supports ADD-PATH (draft-ietf-idr-add-paths)
- Why BGP at the collector?
 - Telemetry reports on forwarding-plane, and a bit more
 - Extended visibility into control-plane information

Results: top 1k routes (1/4)

Results: top 5k routes (2/4)

Results: top 15k routes (3/4)

Results: top 30k routes (4/4)

Considerations

- The BGP controller updates a prefix list containing the prefixes that the device must take from the RIB and install on the FIB (that is, selective route download applied):
 - If a prefix is removed from the RIB it will be removed from the FIB by the device
 - If the BGP controller fails the prefix list remains in the device. Allowing the device to operate normally as per the last instructions

Present and future (1/2)

- Demo run in Spotify Stockholm datacenter, connected to Netnod:
 - Info gathered but no actual changes performed on the Internet Router there
- Pilot to be run very soon by Spotify in cooperation with a major IXP in Europe

Present and future (2/2)

- The BGP controller only computes top prefixes and passes all the information used and the results to plugins
- Plugins can in future do with this information whatever they want:
 - Build reports
 - Build a prefix list and send it to a router
 - Compare possible next-hops, AS PATH's with other active/passive measurements to choose peers based on reliability, latency, etc.

```
# cat etc/config.yaml
max age: 48
csv delimiter: ";"
max routes: 30000
min bytes: 0
packet sampling: 10000
... (output omitted)
plugins:
  - 'prefix data.SavePrefixData'
  - 'statistics.RouteStatistics'
  - 'statistics.OffloadedBytes'
  - 'bird.Bird'
... (output omitted)
```


Thanks! Questions?

David Barroso dbarroso@spotify.com/baolo Lucente <paolo@pmacct.net/">paolo Lucente <paolo@pmacct.net/</p>