
NANOG #49 meeting, San Francisco, CA – Jun 2010

Building traffic matrices to support
peering decisions

Paolo Lucente

<paolo at pmacct dot net>

http://www.pmacct.net/

Agenda

o Introduction

o The tool: pmacct

o Setting the pitch

Building traffic matrices to support
peering decisions

NANOG #49 meeting, San Francisco, CA – Jun 2010

Why speaking of traffic matrices?

– Are traffic matrices useful to a network operator
in the first place? Yes …

 Capacity planning (build capacity where needed)

 Traffic Engineering (steer traffic where capacity is
available)

 Better understand traffic patterns (what to expect,
without a crystal ball)

 Support peering decisions (traffic insight, traffic
engineering at the border, support what if scenarios)

Why speaking of traffic matrices?

– Traffic matrices keep a relatively behind the
scenes topic

– Some works approach the topic formally

– Other works say about the goodies of traffic
matrices:

 But where to start building one?

 What challenges the task presents?

 What resources do I need?

 Which choices and options do I have?

Back to square 1
(Building traffic matrices to support peering decisions)

– What is needed:

 BGP

 Telemetry data: NetFlow, sFlow

 Collector infrastructure: tool, system(s)

 Storage: RDBMS, RRD or home-grown solution

 Maintenance and post-processing scripts

– Risks:

 800 pound gorilla project

 Switch to “MySQL for dummies” from “How to get a
pot of gold from a Leprechaun” as bedtime reading

Building traffic matrices to support
peering decisions

Agenda

o Introduction

o The tool: pmacct

o Setting the pitch

NANOG #49 meeting, San Francisco, CA – Jun 2010

pmacct is open-source, free, GPL’ed software

Introducing BGP natively into a
NetFlow/sFlow collector

– pmacct introduced a Quagga-based BGP daemon

 Implemented as a parallel thread within the collector

 Doesn’t send UPDATEs and WITHDRAWs whatsoever

 Behaves as a passive BGP neighbor

 Maintains per-peer BGP RIBs

 Supports 32-bit ASNs; IPv4 and IPv6 families

– Why BGP at the collector?

 Telemetry reports on forwarding-plane

 Telemetry should not move control-plane information
over and over

Agenda

o Introduction

o The tool: pmacct

o Setting the pitch

Building traffic matrices to support
peering decisions

NANOG #49 meeting, San Francisco, CA – Jun 2010

Getting BGP to the collector

– Let the collector BGP peer with all PE devices:
facing peers, transit and customers.

 No best-path computation at the collector: scalability
preferred to memory usage

 Count some 50MB of memory per full-routing table

 Simply take 64-bit at the collector into consideration
for 75+ BGP peers scenarios (on a single collector)

– Set the collector as iBGP peer at the PE devices:

 Configure it as a RR client for best results

 Collector acts as iBGP peer across (sub-)AS boundaries

– BGP next-hop has to represent the remote edge
of the network model:

 Typical scenario for MPLS networks

 But can be followed up a configurable amount of
times in order to cover specific scenarios like:

• BGP confederations
– Optionally polish the AS-Path up from sub-ASNs

• hop-by-hop routing

• default gateway defined due to partial or default-only
routing tables

Getting BGP to the collector (cont.d)

Getting telemetry to the collector

– Export ingress-only measurements at all PE
devices: facing peers, transit and customers.

 Traffic is routed to destination, so plenty of
information on where it’s going to

 It’s crucial instead to get as much as possible about
where traffic is coming from

– Leverage data reduction techniques at the PE:

 Sampling

 Aggregation (but be sure to carry IP prefixes!)

Getting telemetry to the collector
(cont.d)

– The collector toolbox can include several (say, N)
tools. Multiple export models possible:

 Single tier, unicast: PEs perform N exports

 Single tier, multicast: PEs perform M exports (M < N)

 Multiple tiers: PEs perform export to transparent
replicators in active/standby fashion; these in turn
stream content to the collectors.

– It’s crucial collectors can tag, manipulate, filter,
discriminate, aggregate, etc. telemetry data.

 … might be not all data is for everybody

Telemetry data/BGP correlation

Storing data persistently

– Data need to be aggregated both in spatial and
temporal dimensions before being written down:

 Optimal usage of system resources

 Avoids expensive consolidation of micro-flows

 Suitable for project-driven data-sets

– Open-source RDBMS appear a natural choice

 Able to handle large data-sets

 Flexible and standardized query language

 Solid and evolving storage and indexing engines

 Scalable: clustering, spatial and temporal partitioning

Storing data persisently (cont.d)
create table acct_bgp (

agent_id INT(4) UNSIGNED NOT NULL,

as_src INT(4) UNSIGNED NOT NULL,

as_dst INT(4) UNSIGNED NOT NULL,

peer_as_src INT(4) UNSIGNED NOT NULL,

peer_as_dst INT(4) UNSIGNED NOT NULL,

peer_ip_src CHAR(15) NOT NULL,

peer_ip_dst CHAR(15) NOT NULL,

comms CHAR(24) NOT NULL,

as_path CHAR(21) NOT NULL,

local_pref INT(4) UNSIGNED NOT NULL,

med INT(4) UNSIGNED NOT NULL,

packets INT UNSIGNED NOT NULL,

bytes BIGINT UNSIGNED NOT NULL,

stamp_inserted DATETIME NOT NULL,

stamp_updated DATETIME,

PRIMARY KEY (…)

);

BGP

Fields

Counters

Time

Tag

shell> cat peers.map

id=65534 ip=X in=A

id=65533 ip=Y in=B src_mac=J

id=65532 ip=Z in=C bgp_nexthop=W

[…]

shell> cat pretag.map

id=100 peer_src_as=<customer>

id=80 peer_src_as=<peer>

id=50 peer_src_as=<IP transit>

[…]

– In any schema (a subset of) BGP primitives can be
freely mixed with (a subset of) L1-L7 primitives

Post-processing and reporting
– Traffic delivered to a BGP peer, per location:
mysql> SELECT peer_as_dst, peer_ip_dst, SUM(bytes), stamp_inserted \

FROM acct_bgp \

WHERE peer_as_dst = <peer | customer | IP transit> AND

stamp_inserted = < today | last hour | last 5 mins > \

GROUP BY peer_as_dst, peer_ip_dst

– Aggregate AS PATHs to the second hop:
mysql> SELECT SUBSTRING_INDEX(as_path, ‘.’, 2) AS as_path, bytes \

FROM acct_bgp \

WHERE local_pref = < IP transit pref> AND

stamp_inserted = < today | yesterday | last week > \

GROUP BY SUBSTRING_INDEX(as_path, ‘.’, 2)

ORDER BY SUM(bytes)

– Focus peak hour (say, 8pm) data:
mysql> SELECT … FROM … WHERE … \

stamp_inserted LIKE ‘2010-02-% 20:00:00’ \

…

Post-processing and reporting (cont.d)

– Traffic breakdown, ie. top N grouping BGP peers
of the same kind (ie. peers, customers, transit):

mysql> SELECT … FROM … WHERE … \

local_pref = <<peer | customer | IP transit> pref> \

…

– Traffic matrix (or a subset of it):
mysql> SELECT peer_ip_src, peer_ip_dst, bytes, stamp_inserted \

FROM acct_bgp \

WHERE [peer_ip_src = <location A> AND \

peer_ip_dst = <location Z> AND \]

stamp_inserted = < today | last hour | last 5 mins > \

GROUP BY peer_ip_src, peer_ip_dst

Cariden application notes:
regressed measurements

– Use interface stats as gold standard:
 Traffic management policies based on interface stats

• ops alarm if 5-min average utilization goes >90%

• traffic engineering considered if any link util approach 80%

• cap planning guideline is to not have link util above 90% under any single failure

• etc.

– Mold NetFlow ... to match interface stats
 Builds on Traffic Matrix estimation methods

• Tutorial: Best Practices for Determining the Traffic Matrix in IP Networks, NANOG 43

• http://www.nanog.org/meetings/nanog43/abstracts.php?pt=MjUmbmFub2c0Mw==&nm=nanog43

 Adds information from NetFlow to linear system to solve

 Solve system such that there is strict conformance with link
stat values, with other measurements matched as best
possible.

http://www.nanog.org/meetings/nanog43/abstracts.php?pt=MjUmbmFub2c0Mw==&nm=nanog43
http://www.nanog.org/meetings/nanog43/abstracts.php?pt=MjUmbmFub2c0Mw==&nm=nanog43

Cariden application notes:
regressed measurements deployment
– Interface counters remain the most reliable and

relevant statistics

– Collect NetFlow as convenient:

 Can afford partial coverage (ie. a few big POPs)

 More sparse sampling (ie. 1:10000 instead of 1:1000)

 Less frequent measurements (ie. hourly instead of 5 mins)

– Use regression (ie. Cariden Demand Deduction™ or
similar method) to find the traffic matrix conforming
primarily to interface stats but is guided by NetFlow
stats

Briefly on scalability
– A single collector might not fit it all:

 Memory: can’t store all BGP full routing tables

 CPU: can’t cope with the pace of telemetry export

– Divide-et-impera approach is valid:

 Assign PEs (both telemetry and BGP) to collectors

 Assign collectors to RDBMSs; or cluster the RDBMS.

– Tricky scenario is BGP next-hop follow-ups:

 Gateways or RRs peer with all collectors or

 All eggs in one basket approach or

 BGP peer mapping

• Optionally introduce a route-server layer in the middle

Briefly on scalability (cont.d)

– Intuitively, the matrix can become big:

 Can be reduced by excluding entities negligible to
the specific scenario:

• Keep smaller routers out of the equation

• Filter out specific (class of) customers on dense routers

• Strip down to the essential specific traffic directions (ie.
downstream if CDN, upstream if ISP)

• Sample or put thresholds on traffic relevance

– Project-driven data set:

 If we were to use this for <billing, security, …> …

 … we would aggregate differently in the first place

Further information

– http://www.pmacct.net/lucente_pmacct_uknof14.pdf

 AS-PATH radius, Communities filter, asymmetric routing

 Entities on the provider IP address space

 Auto-discovery and automation

– http://wiki.pmacct.net/OfficialExamples

 Quick-start guide to setup a NetFlow/sFlow+BGP
collector instance

– http://wiki.pmacct.net/ImplementationNotes

 Implementation notes (RDBMS, maintenance, etc.)

http://www.pmacct.net/lucente_pmacct_uknof14.pdf
http://wiki.pmacct.net/OfficialExamples
http://wiki.pmacct.net/OfficialExamples
http://wiki.pmacct.net/ImplementationNotes
http://wiki.pmacct.net/OfficialExamples

Thanks for your attention!

Questions?

Paolo Lucente

<paolo at pmacct dot net>

http://www.pmacct.net/

Building traffic matrices to support
peering decisions

NANOG #49 meeting, San Francisco, CA – Jun 2010

